These helper functions perform join operations on data tables. Most of them are basically one-liners. See https://rpubs.com/ronasta/join_data_tables for a overview of join operations in data table or alternatively dplyr's vignette on two table verbs.

ijoin(x, y, by = NULL)

ljoin(x, y, by = NULL)

rjoin(x, y, by = NULL)

ojoin(x, y, by = NULL)

sjoin(x, y, by = NULL)

ajoin(x, y, by = NULL)

ujoin(x, y, all.y = FALSE, by = NULL)

Arguments

x

[data.frame]
First data.frame to join.

y

[data.frame]
Second data.frame to join.

by

[character]
Column name(s) of variables used to match rows in x and y. If not provided, a heuristic similar to the one described in the dplyr vignette is used:

  1. If x is keyed, the existing key will be used if y has the same column(s).

  2. If x is not keyed, the intersect of common columns names is used if not empty.

  3. Raise an exception.

You may pass a named character vector to merge on columns with different names in x and y: by = c("x.id" = "y.id") will match x's “x.id” column with y\'s “y.id” column.

all.y

[logical(1)]
Keep columns of y which are not in x?

Value

[data.table] with key identical to by.

Examples

batchtools:::example_push_temp(1) # Create two tables for demonstration tmp = makeRegistry(file.dir = NA, make.default = FALSE)
#> No readable configuration file found
#> Created registry in '/tmp/batchtools-example/reg' using cluster functions 'Interactive'
batchMap(identity, x = 1:6, reg = tmp)
#> Adding 6 jobs ...
x = getJobPars(reg = tmp) y = findJobs(x >= 2 & x <= 5, reg = tmp) y$extra.col = head(letters, nrow(y)) # Inner join: similar to intersect(): keep all columns of x and y with common matches ijoin(x, y)
#> job.id job.pars extra.col #> 1: 2 <list[1]> a #> 2: 3 <list[1]> b #> 3: 4 <list[1]> c #> 4: 5 <list[1]> d
# Left join: use all ids from x, keep all columns of x and y ljoin(x, y)
#> job.id extra.col job.pars #> 1: 1 <NA> <list[1]> #> 2: 2 a <list[1]> #> 3: 3 b <list[1]> #> 4: 4 c <list[1]> #> 5: 5 d <list[1]> #> 6: 6 <NA> <list[1]>
# Right join: use all ids from y, keep all columns of x and y rjoin(x, y)
#> job.id job.pars extra.col #> 1: 2 <list[1]> a #> 2: 3 <list[1]> b #> 3: 4 <list[1]> c #> 4: 5 <list[1]> d
# Outer join: similar to union(): keep all columns of x and y with matches in x or y ojoin(x, y)
#> job.id job.pars extra.col #> 1: 1 <list[1]> <NA> #> 2: 2 <list[1]> a #> 3: 3 <list[1]> b #> 4: 4 <list[1]> c #> 5: 5 <list[1]> d #> 6: 6 <list[1]> <NA>
# Semi join: filter x with matches in y sjoin(x, y)
#> job.id job.pars #> 1: 2 <list[1]> #> 2: 3 <list[1]> #> 3: 4 <list[1]> #> 4: 5 <list[1]>
# Anti join: filter x with matches not in y ajoin(x, y)
#> job.id job.pars #> 1: 1 <list[1]> #> 2: 6 <list[1]>
# Updating join: Replace values in x with values in y ujoin(x, y)
#> job.id job.pars #> 1: 1 <list[1]> #> 2: 2 <list[1]> #> 3: 3 <list[1]> #> 4: 4 <list[1]> #> 5: 5 <list[1]> #> 6: 6 <list[1]>