anyMissing
checks for the presence of at least one missing value,
allMissing
checks for the presence of at least one non-missing value.
Supported are atomic types (see is.atomic
), lists and data frames.
Missingness is defined as NA
or NaN
for atomic types and data frame columns,
NULL
is defined as missing for lists.allMissing
applied to a data.frame
returns TRUE
if at least one column has
only non-missing values. If you want to perform the less frequent check that there is at least
a single non-missing observation present in the data.frame
, use
all(sapply(df, allMissing))
instead.
Value
[logical(1)
] Returns TRUE
if any (anyMissing
) or all (allMissing
)
elements of x
are missing (see details), FALSE
otherwise.
Examples
allMissing(1:2)
#> [1] FALSE
allMissing(c(1, NA))
#> [1] FALSE
allMissing(c(NA, NA))
#> [1] TRUE
x = data.frame(a = 1:2, b = NA)
# Note how allMissing combines the results for data frames:
allMissing(x)
#> [1] TRUE
all(sapply(x, allMissing))
#> [1] FALSE
anyMissing(c(1, 1))
#> [1] FALSE
anyMissing(c(1, NA))
#> [1] TRUE
anyMissing(list(1, NULL))
#> [1] TRUE
x = iris
x[, "Species"] = NA
anyMissing(x)
#> [1] TRUE
allMissing(x)
#> [1] TRUE